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On the gauge invariance of linear response theory 

D Adu-Gyamfi? 
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Received 20 November 1985 

Abstract. We demonstrate in a simple way, using a unitary transformation, the general 
gauge invariance of linear response theory. 

1. introduction 

In studies of the response of a system of charged particles in an external electromagnetic 
field, the interaction between the particles and the field is usually expressed in the first 
instance as a linear functional of the electromagnetic potentials A( r, t )  and 4(  r, t ) ,  i.e. 

H , ( t ) = - -  d r J o ( r ) .  A(*, t ) +  
c v  ' I  

In the above, Jo(r )  and d,(r) are the current and charge densities, respectively, in the 
absence of external fields. The integration is over a volume V containing the system 
of particles. Since H , (  t )  depends on the potentials A( r, t )  and 4(  r, t ) ,  the use of the 
above interaction Hamiltonian entails having to establish gauge invariance in each 
specific case (Nakajima 1956, Kadanoff and Martin 1961, Siskens and Mazur 1972). 

However, it has been established that by means of a canonical transformation on 
the non-relativistic Pauli Hamiltonian of a molecule in an external electromagnetic 
field, one can eliminate the potentials A(r, t )  and 4( r ,  t )  in favour of the electric and 
magnetic fields E (  r, t )  and B( r, t )  apart from terms proportional to the total molecular 
charge. The fields and potentials are related in the usual manner by 

l a  
c a t  

E ( r , t )= - - -A( r , t ) -V4( r ,  t )  

B(r, t ) = V  A A(r, t ) .  

The canonical transformation which is unitary is defined by 

U = e x p  - g ( t )  ( d  ) 
g ( t ) = - -  drP( r ) -A( r ,  t )  

c v  'I (1.3) 

where P (  r )  is the total electric polarisation density vector. The canonical transforma- 
tion technique has, over the years, been considered by several workers including 

t Permanent address: Department of Mathematics, University of Cross River State, Uyo, CRS Nigeria. 

0305-4410/86/ 163443 + 05$02.50 0 1986 The Institute of Physics 3443 



3444 D Adu-Gyamji 

Goeppert-Mayer (1931), Richards (1948), Lamb (1952), Power and Zienau (1959), 
Fiutak (1963), Atkins and Woolley (1970), Babiker er a1 (1973,1974), Felderhof (1974), 
Felderhof and Adu-Gyamfi (1974) and Adu-Gyamfi (1981). 

Generally, after the application of the unitary transformation, the initial non- 
relativistic Pauli Hamiltonian is reduced to multipole form and for a neutral molecule 
the potential terms are completely eliminated in favour of the electric and magnetic 
fields. Hence, this approach is particularly well suited for electromagnetic response 
theory and has recently been exploited to identify the ‘electric’ and ‘magnetic’ response 
terms for a neutral molecule (Adu-Gyamfi 1981). Nevertheless for ions some potential 
terms still survive and the issue of gauge invariance still remains relevant. 

Barron and Gray (1973) demonstrated that a canonical transformation may not be 
necessary to transform the initial potential-dependent Hamiltonian to a field-dependent 
one, provided one chooses an appropriate gauge to start with. Following this, Woolley 
(1973, 1974) pointed out the equivalence of the gauge transformation approach and 
the canonical transformation formalism by choosing an initial gauge in which the 
corresponding generating function of the unitary transformation U vanishes, i.e. 

In effect one has the identity unitary transformation. This establishes a close relation 
between the gauge and canonical transformation approaches. 

The demonstration of the general gauge invariance of linear response theory will 
be shown to follow from the invariance of linear response under a unitary transforma- 
tion coupled with the fact that a classical gauge transformation is equivalent in the 
quantum mechanical formalism to an appropriate unitary transformation. 

In 0 2 we outline briefly the basic linear response theory of Kubo. This is shown, 
in 0 3, to be invariant under a general unitary transformation. This in turn establishes 
the gauge invariance of linear response theory, through the equivalence of a classical 
gauge transformation with an appropriate quantum mechanical unitary transformation. 

2. The basic linear response theory 

In the conventional linear response theory (Kubo 1957), one considers a system which 
is slowly drawn out of its equilibrium state in such a way that the deviation from the 
equilibrium state is small. The perturbation responsible for this process is expressed 
by an interaction Hamiltonian H , ( t )  which allows one to find the change produced 
in the density matrix and, correspondingly, in the dynamical variables of the system. 
For perturbations which are electromagnetic in character, H I (  t )  is usually given by 

in familiar notation. 

specified by the equilibrium density matrix po satisfying 
The initial ensemble statistically representing the initial state of the system is 

1 
P o  = [Ho,  Pol = 0 
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where Ho is the Hamiltonian in the unperturbed state. Under the external perturbation 
HI( t ) ,  the statistical distribution of the system is then described by the time-dependent 
density matrix p (  t )  satisfying 

1 
P ( t )  =z [HO+HI(t), P( t ) l  

subject to 

d - m )  = p0= exp(-PH0)lTr(exp( -PHo)). 

P ( t )  = P O + P l ( t )  

To first order in H , ( t )  we can express p ( t )  as 

where 

This has the solution 

The average of an observable 0 is determined according to 

( O ( t ) )  = W P ( t ) O ( t ) I .  (2.5) 

O( t )  = o,+ O,( t )  (2.6) 

To first order in H , ( t )  we expand O ( t )  as 

where Oo is the observable in the unperturbed state. Thus to first order in H , ( t ) ,  

(O(t))I = TrIp(t)O(t)}  

= TrboOo} + TrboO*( 1 ) )  + Trip1 ( t )  0 0 1  

In the above, ( 
we let (Oo)o vanish and define the linear response of 0 as 

represents an equilibrium average. Without any loss of generality 

In the case of electromagnetic perturbation, HI( t )  is potential dependent, equation 
(1-1), and thus the linear response will be potential dependent. However, in appropriate 
cases it may be reduced to a linear relation in the fields E ( r ,  t )  and B(r ,  t )  often after 
invoking various commutation relations and the continuity equation for charge and 
current densities (Siskens and Mazur 1972). 

3. Unitary transformation and gauge invariance 

As pointed out earlier, a classical gauge transformation 

l a  
c a t  

A + .  A* = A + V x  I$+. 4 * = 4 - -  - x  (3.1) 
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is equivalent in the quantum mechanical description to a unitary transformation 
U = exp[ig( t ) / h ] .  The generating function g(  t )  of the unitary transformation U is 
related to the generating function x (  r, t )  of the corresponding gauge transformation by 

where ej,  rj represent the charge and position of the j th  particle. Hence, we see that 
gauge invariance will follow simply from the invariance of the linear response under 
a unitary transformation U. 

Under a unitary transformation U = exp[ig( t ) / h ]  the Hamiltonian H, a linear 
operator 0, wavefunction CC, and the density matrix p transform as follows: 

H +  HI'= UHU-I-agIat 

0 + 0' = uou-' 
c c ( + C C , ' =  UCC, 

p + p ' =  U-'pu. 

Thus after the unitary transformation, we have to first order in HI( t )  

H"( t )  = Ho + H';( t )  

where 

1 ag 
H'Xt) = f f 1 ( t ) + -  [ A t ) ,  Hal-- f i  a t  

O'( t )  = OOC o;( t )  

and 

where 

(3.3) 

1 o:(t>= o l ( t ) + p t ) ,  0 0 1 .  (3.4) 

Similarly the first-order correction to the equilibrium density matrix po after the unitary 
transformation is given by 

(3.5) 

Hence, in the transformed framework, the linear response is given by 

(o'(t)); = Trb ' ( t )O'( t )1  

= Tr{ P o o ;  ( t>1 + Tr{ P I ( t 0 0 1  

Therefore we have established the invariance of linear response under an arbitrary 
unitary transformation. This in turn establishes the gauge invariance of linear response 
theory. We note that the above proof is general and not restricted to any specific model. 
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